

Department of Fundamental Research (DBP) in 2025

Structure

Nuclear Physics Division (BP1)

head - prof. dr. hab. Zygmunt Patyk

*nuclear structure and nuclear reactions
at low and intermediate energies*

Theoretical Physics Division (BP2)

head - dr. hab. Michał Kowal

*nuclear physics from low to high energies,
physics of elementary particles,
QCD, field theory, astrophysics, cosmology,
classical and quantum gravity*

High Energy Physics Division (BP3)

head - dr. hab. Justyna Łagoda

*experimental elementary particle physics
and experimental high-energy nuclear physics*

Astrophysics Division (BP4)

head – dr. hab. Katarzyna Małek

*observational cosmology and astrophysics,
experimental cosmic ray physics*

Employee of DBP

	DBP 2024		DBP 2025	
	people	jobs	people	Jobs
prof. & dr. hab.	43 (11)	34.9	44 (12)	34.7
dr	41 (1)	40.5	48 (1)	47.5
mgr	0	0	0	0
administration & technical stuff	4 (1)	3.8	4	3.8
all	88 (13)	79.2	96 (13)	86

2025	BP1		BP2		BP3		BP4	
	people	jobs	people	jobs	people	jobs	people	jobs
prof. & dr. hab.	3	3	23 (5)	19.1	10 (4)	6.8	8 (3)	5.8
dr	3	3	17 (1)	16.5	14	14	14	14
mgr	0	0	0	0	0	0	0	0
administration & technical stuff	0	0	0	0	0	0	0	0
all	6	6	46 (6)	35.6	24 (4)	20.8	22(3)	19.8

31 Ph.D. students in 2024

32 Ph.D. students in 2025

* in brackets number of retired employees

Promotions

2024

Doctorates: 6

Habilitations: 3

Professorships: 0

2025

Doctorates: 6

Habilitations: 1

Professorships: 1

Doctorates: Alice Boldrin, Hari Kumar Sree Kanth, Margherita Grespan, Swalehy Nisar Mulani, Abhishek Chikkaballi Ramalingegowda, Daniele Rizzo

Habilitations: Sebastian Trojanowski

Professorships: Katarzyna Małek

Research grants

2024

all grants: **61**

NCN : **31**

MNiSW : **4**

UE, NCBiR, NAWA , others : **26**

2025

all grants: **56**

NCN: **30**

MNiSW : **10**

UE, NCBiR, NAWA, others: **16**

Publications

2024

Peer-reviewed publications: **434**

BP1: **14** (3 together with BP2, BP3)

BP2: **107** (48 together with BP3)

BP3: **301** (50 together with BP1, BP2 or BP4)

BP4: **63**

2025

Peer-reviewed publications: **405**

BP1: **14** (2 together with BP3)

BP2: **118** (53 together with BP3 or BP4)

BP3: **252** (56 together with BP1, BP2 or BP4)

BP4: **77** (1 together with BP4)

Main fields of research

Experimental physics

- High-energy particle physics – experiments CMS & LHCb, 9*
- Neutrino physics – experiments T2K, SK, Hyper-K, 5
- High-energy nuclear physics – experiments ALICE, NA61/SHINE, 7
- High-energy lepton-hadron interactions – experiments COMPASS, AMBER 5
- Hadron physics – experiments KLOE-2, 2
- e^+e^- physics – BESIII - 2
- Observational cosmology – projects VIPERS, VVDS, AKARI, Planck, 18
- Observational astrophysics – LIGO-Virgo, 3
- Cosmic ray physics – experiments JEM-EUSO, 1
- Nuclear structure – experiments @ GSI and @ U200, 3
- Nuclear reactions at low and intermediate energies, 5

* approximate number of physicists involved

Main fields of research cont.

Theoretical physics

- Structure and dynamics of atomic nuclei (superheavy and exotic), 4*
- Interactions and structure of hadrons, QCD, 12
- Cosmological models, classical and quantum gravity, 8
- Physics beyond Standard Model and dark matter, 10
- Quark-gluon plasma, 2
- Ultra-cold atomic gases, 2

* approximate number of physicists involved

Presentations of main research achievements of 2025

presentation	speaker
<i>Semi-leptonic decays of hyperons at BESIII</i>	Varvara Batozskaya
<i>A search for heavy stable charged particles by the CMS experiment</i>	Piotr Zalewski
<i>Search for hadron exotics in new decay modes of B^0 meson at LHCb</i>	Salil Joshi
<i>Evidence of isospin-symmetry violation in high-energy collisions of atomic nuclei</i>	Tobiasz Czopowicz
<i>A new near-threshold dipole resonance in ^{10}Be</i>	Nickolas Keeley
<i>New insights into fusion and tripartition from the past year</i>	Yannen Jaganathan
<i>Nucleon Imaging from QCD</i>	Paweł Sznajder
<i>Semiclassical causal geodesics: Minkowski spacetime case</i>	Aleksandra Pędrak
<i>Precise Higgs predictions as a window into the physics beyond Standard Model</i>	Wojciech Kotlarski
<i>Neutron star heating by dark matter in an axion-like particle mediated lepton-flavor-violating model</i>	Hoefken Zink Jaime
<i>Interstellar dust: what tiny grains tell us about galaxy evolution</i>	Ambra Nanni
<i>Evidence for distinct gas and dust evolution in quiescent galaxies</i>	Guliano Lorenzon
<i>Radio tracing star formation in giant molecular clouds: a spatially resolved study of NGC 253</i>	Subhrata Dey
<i>Discovery of extragalactic radio rings and odd radio circles</i>	Subhrata Dey Pratik Dabhade
<i>Characterisation of outflows in the Milky Way with SOFIA and JWST</i>	Miguel Figueira