

$\eta \rightarrow \pi^0 \gamma \gamma$ analysis in KLOE experiment

Marcin Berlowski Odbiory NCBJ 20.XII.2021

• KLOE collaboration consists of 58 members from more then 25 institutions

NCBJ:

- Wojciech Wiślicki (Institutional Board, Policy Board)
- Andrzej Kupść (Analysis Board, Policy Board)
- Marcin Berłowski (Technical Board)
- Wojciech Krzemień
- The presented results are based on my work for KLOE
- Moreover WW and AK are the internal collaboration referees for the analysis

DAFNE & KLOE

- DAFNE e^+e^- collider @ $\sqrt{s}=M_{\phi}(1020 \text{ MeV})$ located in Frascati near Rome, Italy
- Two big data campaigns: 2001–06 and 2014-18 collecting $\sim 8 \text{fb}^{-1} \rightarrow 2.4 \cdot 10^{10} \text{ }\phi$
- The BR($\phi \rightarrow \eta \gamma$)=1.3% which gives >10⁸ η 's and the biggest in the world data sample of such decays collected at this energy in e⁺e⁻ collider

BR of $\eta \rightarrow \pi^{\circ} \gamma \gamma$

- AGS/Crystal Ball ($K^-p \rightarrow \Lambda \eta$) [2] (~1200 ev):

BR($\eta \rightarrow \pi^{\circ} \gamma \gamma$)=(2.21 ± 0.24_{stat} ± 0.38_{syst}) · 10⁻⁴

- KLOE ($\phi \rightarrow \eta \gamma$) [3] (63±28 ev), preliminary, based on L_{int}=450 pb⁻¹:

[1] E. Oset et al, Phys. Rev. D 67, 073013 (2003),

[2] S. Prakhov et al., Phys. Rev. C 78 (2008) 015206

[3] B. Di Micco et al., Acta Phys. Slov. 56, 403 (2006),

SM motivation

[Ll. Ametller et al. PLB 276(1) (1984)]

- χ PT "golden mode": p² null, p⁴=0 on the tree level & suppressed on 1-loop by G-parity and large kaon mass \Rightarrow p⁶ dominates G-parity is a combination of charge conjugation and a 180° rotation around the 2nd axis of isospin space.
- Coefficient values $@ O(p^6)$ and their signs must be determined from models
- $M(\gamma\gamma)$ or $M^2(\gamma\gamma)$ of non- π° photons can be used as a test of χPT and a wide range of chiral models, ex. VMD and $L\sigma M$

BSM motivation

- Search for a new physics possible analog of the U boson, but B boson (leptophobic DM mediator) couples mostly to quarks, in the most basic model to baryon number via kinetic mixing term ε
- U boson searches don't exclude the existence of the B boson above $m_{\pi^{\circ}}$ and this can still have an impact on the g-2 anomaly
- We can look for a B signature in the $M(\pi^{\circ}\gamma)$ produced in either $\phi \rightarrow B\eta$ or $\eta \rightarrow B\gamma$

[S. Tulin Phys. Rev. D 89, 114008 (2014), arXiv:1404.4370]

 $\phi \rightarrow \eta \gamma$ with $\eta \rightarrow \pi^{\circ} \gamma \gamma$

- A new analysis of old KLOE data, using $\sim 4x$ larger data sample (1.7 fb⁻¹)
- Clean case 5 photon final state, no charged tracks
- Main background from: $\phi \rightarrow a_0 \gamma \rightarrow \eta \pi^{\circ} \gamma$, $\phi \rightarrow (f_0 \rightarrow \pi^{\circ} \pi^{\circ}) \gamma$, $e^+e^- \rightarrow (\omega \rightarrow \pi^{\circ} \gamma) \pi^{\circ}$ and the most dangerous $\phi \rightarrow (\eta \rightarrow 3\pi^{\circ}) \gamma$ with lost or merged photons
- Tagging $\eta \rightarrow \pi^{\circ} \gamma \gamma$ with the recoil photon of E = 363MeV from $\phi \rightarrow \eta \gamma$ decay
- Variables corrected by a kinematic fit with TOF of 5γ 's and E & p conservation

$\phi \rightarrow \eta \gamma$ with $\eta \rightarrow \pi^{\circ} \gamma \gamma$

- Additional selection criteria:
 - Kinematic fits with mass constrains either on $\pi^{\circ}\pi^{\circ}$ or $\eta\pi^{\circ}$ to filter a_0, f_0 and ω
 - BDT trained with MC using cell properties to suppress $\eta \rightarrow 3\pi^{\circ}$ with merged clusters
 - Dedicated kinfit for $\eta \rightarrow 3\pi^{\circ}$ cases when 2 photons were lost/undetected

- $\eta \rightarrow 3\pi^{\circ}, \eta \rightarrow \pi^{\circ}\gamma\gamma$ signal and \sum of non-3pi0 MC shapes fitted to data points
- Fit chi2/(ndf=98)=1.033 (fit_prob=39%)

 $\frac{BR(\eta \to \pi^{\circ} \gamma \gamma)}{BR(\eta \to 3\pi^{\circ})} = \frac{N_S/\varepsilon_S}{N_{3\pi^{\circ}}/\varepsilon_{3\pi^{\circ}}}$

- Number of signal/3pi0 events taken from the fit results
- Channel efficiencies coming from MC
- $\eta \rightarrow 3\pi^{\circ}$ BR and it's error from PDG database
- Method used to avoid part of systematic errors
- BUT it depends on a very small and special subsample of $3\pi^{\circ}$'s with $\varepsilon_{3\pi^{\circ}} \sim (0.04)\%$
- We have other methods...

- Similar analysis as for $\eta \rightarrow \pi^0 \gamma \gamma$ channel, but this time $\phi \rightarrow \eta \gamma \rightarrow 3\pi^0 \gamma \rightarrow 7\gamma$ in the final state (BR~33%)
- Very pure channel, backgrounds well bellow 1%
- When used, can reduce part of systematic effects

 $VLAB - e^+e^- \rightarrow e^+e^-$ scattered at large angles

- Online measurement: 1722.1 pb⁻¹
- Offline with VLAB (constant CS assumed): 1729.6 pb⁻¹
- Correcting for \sqrt{s} movement and $CS_{\eta\gamma}$: **1729.8 pb**⁻¹

BR values

- Using 3 component fit results and normalizing to $5\gamma \eta \rightarrow 3\pi^{\circ}$:
 - BR($\eta \rightarrow \pi^{\circ} \gamma \gamma$) = (1.12 ± 0.11_{stat})·10⁻⁴
- Using normalization to $7\gamma \eta \rightarrow 3\pi^{\circ}$: BR $(\eta \rightarrow \pi^{\circ}\gamma\gamma) = (1.21 \pm 0.13_{stat}) \cdot 10^{-4}$
- Using integrated luminosity measurement: BR($\eta \rightarrow \pi^{\circ} \gamma \gamma$) = $(1.11 \pm 0.13_{\text{stat}} \pm 0.04_{\text{lum}}) \cdot 10^{-4}$

Old KLOE prelim (68±23 ev): $(0.84 \pm 0.27_{stat} \pm 0.14_{syst}) \cdot 10^{-4}$ PDG (AGS08, ~1.5k ev): $(2.21 \pm 0.24_{stat} \pm 0.38_{syst}) \cdot 10^{-4}$

A2 MAMI PRC 90 (2014) 025206

• $\gamma\gamma$ pair of non- π° photons in $\eta \rightarrow \pi^{\circ}\gamma\gamma$

- Coming from Escribano et al. [**PRD** 102 (2020) 034026]
- Claims that previous calculations were overestimated by a factor of two due to not taking into account the same non-π° two photons in the final state when relating decay amplitude with it's width
- Why we should believe them? They can predict $\eta' \rightarrow \pi^{\circ} \gamma \gamma$ using the same method that matches BESIII data [*PRD* 96 (2017) 012005].

$d\Gamma/dM^2(\gamma\gamma)$ in KLOE

- Separate fits to $M(\pi^{\circ}\gamma\gamma)$ in $M^{2}(\gamma\gamma)$ slices
- Bin 0.011-0.0275 GeV²/c⁴ missing due to $\pi^{\circ}\pi^{\circ}$ veto
- KLOE with statistical error only, other experiments using total
- Good agreement with the latest theoretical predictions

• CB (2008):

A2 (2014):

 $BR(\eta \rightarrow \pi^{\circ} \gamma \gamma) = (2.21 \pm 0.24_{stat} \pm 0.47_{syst}) \cdot 10^{-4}$ $(2.56 \pm 0.24_{tot}) \cdot 10^{-4}$

• KLOE 2021:

– From integration of $d\Gamma/dM^2$ (missing bin lineary interpolated):

 $(1.40 \pm 0.14_{stat}) \cdot 10^{-4}$

– Integrating $d\Gamma/dM^2$, normalizing to 7γ :

 $(1.30 \pm 0.13_{stat}) \cdot 10^{-4}$

- From the full spectrum (NOTE that we don't have bin around M(π°) here!): (1.12 ± 0.11_{stat})·10⁻⁴ or (1.21 ± 0.11_{stat})·10⁻⁴ normalizing to 7 γ

• Escribano et al. (2020) predicts **BR**_{theo}=1.35(8)·10⁻⁴

Conclusions

- Well established analysis methods
- Not only BR, but also $d\Gamma/dM^2(\gamma\gamma)$ shows half of expected (from the last experiments at least) contribution
- Good agreement to the latest calculations
- Proper evaluation of errors in $d\Gamma/dM^2(\gamma\gamma)$ needed
- Systematics determination ongoing
- Preparation of paper draft in progress

Conclusions

- Well established analysis methods
- Not only BR, but also $d\Gamma/dM^2(\gamma\gamma)$ shows half of expected (from the last experiments at least) contribution
- Good agreement to the latest calculations
- Proper evaluation of errors in $d\Gamma/dM^2(\gamma\gamma)$ needed
- Systematics determination ongoing
- Preparation of paper draft in progress

THANK YOU for your attention!!!