Spin Density Matrix Elements in Exclusive Vector Meson

Muoproduction at COMPASS

Andrzej Sandacz

National Centre for Nuclear Research, Warsaw

BP3 Division

Annual DBP Seminar

Warszawa, December 20, 2021

- Introduction
- SDMEs for exclusive vector meson production
- Generalised Parton Distributions
- COMPASS experiment and the data
- Results on SDMEs and related observables
- Summary and outlook

Introduction

Hard exclusive meson leptoproduction (HEMP) $l \ N \rightarrow l' N' M$ in one-photon-approx. $\gamma^* N \rightarrow N' M$ 'Hard' \equiv high virtuality Q^2 of γ^* , or large mass of M (Quarkonia)HEMP a tool for studying• mechanism of reaction
• structure of the nucleonTwo approaches to describe HEMP• color-dipol model (for VMs)
color-dipol interaction with nucleon described
either by Regge phenomenology or by pQCD

• GPD models (for VMs and PMs)

Numerous results (13 publications) for ρ^0 production on *p*, *d* and ³*He cf. review by L. Favart, M. Guidal, T. Horn, P. Kroll arXiv:1511.04535v2 (2018)* Detailed studies of cross sections σ_T , σ_L , σ_T + $\epsilon\sigma_L$ as functions of kinematic variables

In most cases complete information on the spin-dependent amplitudes not available then, for example, the separation $\sigma_T vs. \sigma_L$ relies on measurements of 1D-angular distribution(s) and assumption of s-channel helcity conservation

Only in 3 publications (HERMES, H1, ZEUS) + recently from COMPASS results on complete set of SDMEs obtained from the analysis of 3D-angular distributions

Vector meson spin-density matrix

> $\rho_{\lambda_V \lambda'_V}$ decomposes into nine matrices $\rho^{\alpha}_{\lambda_V \lambda'_V}$ corresponding to different photon polarisation states $\alpha = 0 - 3$ - transv., 4 - long,, 5 - 8 - interf.

when contributions from transverse and longitudinal photons cannot be separeted

following SDMEs are introduced (K.Schilling and K. Wolf, NP B 61 (1973) 381)

$$\begin{split} r_{\lambda_V \lambda'_V}^{04} &= (\rho_{\lambda_V \lambda'_V}^0 + \epsilon R \rho_{\lambda_V \lambda'_V}^4) (1 + \epsilon R)^{-1}, \\ r_{\lambda_V \lambda'_V}^\alpha &= \begin{cases} \rho_{\lambda_V \lambda'_V}^\alpha (1 + \epsilon R)^{-1}, \ \alpha = 1, 2, 3, \\ \sqrt{R} \rho_{\lambda_V \lambda'_V}^\alpha (1 + \epsilon R)^{-1}, \ \alpha = 5, 6, 7, 8. \end{cases} \quad R = \sigma_{\rm L} / \sigma_{\rm T} \end{split}$$

GPDs and Hard Exclusive Meson Production

>wave function of meson (DA) additional non-perturbative term Chiral-even GPDs helicity of parton unchanged

$$H^{q,g}(x,\xi,t) \qquad E^{q,g}(x,\xi,t) \\ \widetilde{H}^{q,g}(x,\xi,t) \qquad \widetilde{E}^{q,g}(x,\xi,t)$$

Chiral-odd GPDs helicity of parton changed (not probed by DVCS)

$H^q_T(x,\xi,t)$	$E_T^q(x,\xi,t)$
$\boldsymbol{\widetilde{H}}_{T}^{q}(x,\xi,t)$	$\widetilde{E}_{T}^{q}(x,\xi,t)$

Flavour separation for GPDs example:

$$\begin{split} E_{\rho^{0}} &= \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} + \frac{1}{3} E^{d(+)} + \frac{3}{4} E^{g} / x \right) & \text{Diehl, Vinnikov} \\ E_{\omega} &= \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} - \frac{1}{3} E^{d(+)} + \frac{1}{4} E^{g} / x \right) \\ E_{\phi} &= -\frac{1}{3} E^{s(+)} + \frac{1}{4} E^{g} / x \end{split}$$

- contribution from gluons at the same order of $\alpha_{\mbox{\tiny s}}$ as from quarks

Measured processes and COMPASS experimental setup

(i)
$$\mu \rho \rightarrow \mu' \rho' \rho^0$$
 (ii) $\mu \rho \rightarrow \mu' \rho' \omega$
 $\downarrow \pi^+ \pi^ \downarrow \pi^- \pi^0$
 $\downarrow \gamma \gamma$

secondary beam line M2 from the SPS *

> high energy naturally **polarised** μ^+ or μ^- beams, P \approx -80% / +80% delivers:

liquid H2 target 2.5 m long *

V0+

VI01 VO01 VI02

01 02 03

FI01 FI15 FI02

two-stage forward spectrometer SM1 + SM2 *

≈ 300 tracking detectors planes – high redundancy

Selection of exclusive ω sample for SDME analysis

 $\mu \, p \rightarrow \mu' \, \omega \, p'$ Topological selection: scattered muon $\begin{array}{c} & & \\ & &$ + two hadrons with opposite charges + two neutral clusters in calorimeters **Recoil proton detector** not included in selections $1 < Q^2 < 10 \text{ GeV}/c^2$ $0.01 < p_T^2 < 0.5 (\text{GeV/c})^2$ $W > 5 \, \text{GeV}$ After all selections 0.1 < y < 0.9≈ 3 000 evts $E_{\rm miss} = \frac{(M_X^2 - M_p^2)}{(2M_p)} | /E_{\rm miss} / < 3 \,{\rm GeV}$ Events/(13.1 MeV/c²) Events/(0.3 GeV) Events/(5.4 MeV/c²) 600 $f_{\rm bg} = 0.28$ 500 --Gauss --B-W background background 150 400 _sum -sum 300 100 150 200 100F 50 100 50F 0 ²⁵⁰ 300 *Μ*_{γγ}(MeV/*c*²) 15 E_{miss} (GeV) 100 150 200 -5 50 0 5 10 700 750 800 900 650 850 M π+π-π⁰ (MeV/c²)

Experimental access to SDMEs

$$W^{U+L}(\Phi,\phi,\cos\Theta) = W^U(\Phi,\phi,\cos\Theta) + P_B W^L(\Phi,\phi,\cos\Theta) \propto$$

SDMEs: "amplitudes" of decomposition of W^{U+L} in the sum of 23 terms with different angular dependences

[K. Schilling and G. Wolf, Nucl. Phys. B61, 381 (1973)]

15 unpolarised SDMEs (in W^U) and 8 polarised (in W^L)

- Unbinned ML fit to experimental W^{U+L} taking into account
 - total acceptance
 - fraction of background in the signal window
 - anglar distribution of background W^{U+L}_{bkg} (determined either from LEPTO MC or real data side band)

 $d\sigma$

for ω : angle Θ between direction of ω and normal to decay plane

Results on SDMEs for exclusive ρ^0 production for total kin. range

$$\begin{array}{l} 1 \ {\rm GeV^2 < Q^2} & < 10 \ {\rm GeV^2} \\ 5 \ {\rm GeV} < W & < 17 \ {\rm GeV} \\ 0.01 \ {\rm GeV^2} < {\rm p_T^2} < 0.5 \ {\rm GeV^2} \end{array}$$

 $< Q^2 > = 2.4 \text{ GeV}^2$ <W> = 9.9 GeV $< p_T^2 > = 0.18 \text{ GeV}^2$

- SDMEs grouped in clasess: A, B, C, D, E corresponding to different helicity transitions
- SDMEs coupled to the beam polarisation shown within green areas
- if SCHC holds all elements in classes C, D, E should be 0

not obeyed for transitions $\gamma^*_T \rightarrow \rho_L$

Transitions $\gamma^*_T \rightarrow \rho_L$

Goloskokov and Kroll, EPJC 74 (2014) 2725 possible GPD interpretation

contribution of amplitudes depending on chiral-odd ("transversity") GPDs $H_T, \overline{E}_T = 2\widetilde{H}_T + E_T$

 $W (\text{GeV}/c^2)$

Results on SDMEs for exclusive ω production for total kin. range

•
$$r_{00}^5 \propto \operatorname{Re}[\langle \overline{E}_T \rangle_{LT}^* \langle H \rangle_{LL} + \frac{1}{2} \langle H_T \rangle_{LT}^* \langle E \rangle_{LL}]$$

 $\begin{array}{l} 1 \ {\rm GeV^2 < Q^2} \ < 10 \ {\rm GeV^2} \\ 5 \ {\rm GeV} < W \ \ < 17 \ \ {\rm GeV} \\ 0.01 \ {\rm GeV^2} \ < {\rm p_T^2} \ < 0.5 \ {\rm GeV^2} \end{array}$

 $< Q^2 > = 2.1 \text{ GeV}^2$ < W > = 7.6 GeV $< p_T^2 > = 0.16 \text{ GeV}^2$

GK model, EPJA 50 (2014) 146 (1st version) parameters constrained mostly by HERMES results for ρ^0 and ω

COMPASS provides new constraints for parameterisation of the model

• p^0 and ω results for class C complementary

 \overline{E}_T and H have the same signs for u and d quarks H_T and E have opposite signs for u and d quarks

for ω the first term in Eq. (•) still dominates, but sensitivity to $H_{\rm T}$ is enhanced compared to ρ^0

Contribution of helicity-flip NPE amplitudes to ρ^0 cross section

quantified by the ratios $\tau_{ij} = \frac{|T_{ij}|}{\sqrt{N}}$ calculated as combinations of SDMEs *cf. HERMES Collab., EPJC 63, 659 (2009)*

 T_{01} , T_{10} and T_{1-1} are the NPE amplitudes for the transitions $\gamma_T^* \to \rho_L^0$, $\gamma_L^* \to \rho_T^0$, $\gamma_T^* \to \rho_{-T}^0$ and \mathcal{N} is a normalisation constant

- > only τ_{01} significantly different from zero much smaller τ_{01} and τ_{01}
- pattern consistent with different degrees of SCHC violation in classes C, D and E
- \blacktriangleright increase of τ_{01} with increasing Q^2 and ${p_{\rm T}}^2$

fractional contribution of helicity-flip NPE amplitudes to the full cross section

 $\tau_{\text{NPE}}^2 = (2\epsilon |T_{10}|^2 + |T_{01}|^2 + |T_{1-1}|^2) / \mathcal{N} \approx 2\epsilon \tau_{10}^2 + \tau_{01}^2 + \tau_{1-1}^2$

≈ 0.03 averaged over total kinematic range

NPE-to-UPE asymmetry of cross sections

NPE-to-UPE asymmetry of cross sections for transitions $\gamma_T^* \rightarrow V_T$

$$P = \frac{2r_{1-1}^{1}}{1 - r_{00}^{04} - 2r_{1-1}^{04}} \approx \frac{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) - d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) + d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}$$

Summary and outlook

- > measured SDMEs in hard exclusive ρ^0 and ω muoproduction at energies 5 17 GeV
- access to helicity amplitudes => constraints on GPD models
- SDMEs a sensitive tool to access subleading amplitudes (via interference)
- ➤ violatation of SCHC observed for transitions $\gamma^*_T \rightarrow V_L$ in GPD framework described by contribution of chiral-odd "transversity" GPDs
- > large contribution of UPE transitions for ω , only a few % for ρ^0 in GK model described predominantly by the π^0 pole exchange
- > planned analysis of SDMEs and cross sections for exclusive ϕ , ω and J/ ψ production collected in 2016+2017 with statistic ~ 10 times larger than from 2012

Backup slide

UPE and NPE contributions (contd.)

GPD interpretation Goloskokov and Kroll, EPJA 50 (2014) 146

UPE amplitudes depend on helicity GPDs $\widetilde{E}, \widetilde{H}$

the former supplemented by π^0 pole contribution treated as one-boson exchange

parameters constrained by HERMES SDMEs for ω (except the sign of $\pi\omega$ transition form factor)

> the pion pole contribution dominates UPE at small W and $p_{\rm T}{}^2$

> $\pi\omega$ transition form factor $(g_{\pi\omega})$ about **3 times larger** than $\pi\rho^0$ transition f.f. $(g_{\pi\rho})$: $g_{\pi\rho} \simeq \frac{e_u + e_d}{e_u - e_d} g_{\pi\omega}$

 $\ensuremath{\mathsf{NPE}}$ amplitudes depend on GPDs H and E

NPE contribution for ρ^0 production about **3 times larger** than for ω production (for amplitudes) this factor 3 is due to the dominant contribution from gluons and sea quark GPDs while the contribution from valence quarks is about the same for ω and ρ^0 production

Thus on the cross section level

leaving aside other small conributions

$$d\sigma_T^N \approx d\sigma_T^U$$
 for ω *P* asymmetry ≈ 0
 $d\sigma_T^N \approx 9 \ d\sigma_T^U$ for ρ^0 *P* asymmetry ≈ 1