Hints of New Physics in flavor anomalies

Enrico Maria Sessolo

BP-2

NCBJ Symposium

10.12.2019 Warsaw

Direct searches at the LHC

A very SM-like Higgs boson at 125 GeV...

. but no new physics below 1-2 TeV!

iius. July 2018						$\int \mathcal{L} dt = 0$	(3.2 – 79.8) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ Te}$
Model	<i>l</i> ,γ	Jets†	E ^{miss}	∫£ dt[fl	p ⁻¹]	Limit		Reference
ADD G _{NK} + g/q	0 e. µ	1-41	Yes	36.1	Mo	7.7 TeV	n = 2	1711.03301
ADD non-resonant yy	2 7	-	-	36.7	Ms	8.6 TeV	n = 3 HLZ NLO	1707.04147
ADD QBH	-	2)	-	37.0	Max	8.9 TeV	n = 6	1703.09127
ADD BH high $\sum p_T$	$\geq 1 \sigma, \mu$	221	-	3.2	Max	8.2 TeV	n = 6, M _D = 3 TeV, rot 8H	1606.02265
ADD BH multiet	2 -	531	-	3.6	M _{th}	9.55 TeV	n = 6, Mp = 3 TeV, rot BH	1512.02586
Bulk BS Gev -> WW/77	multi-channa			36.1	Gev mass	23 TeV	$k/M_{\odot} = 0.1$	CEBN.EP.2016.179
Bulk RS gen -+ tt	1 e.µ 3	1 b, ≥ 1,35	Zi Yes	36.1	Bcc mass	3.8 TeV	$\Gamma/m = 15\%$	1804.10823
2UED / RPP	1 e, µ	≥ 2 b, ≥ 3	Yes	36.1	KK mass	1.8 TeV	Tier (1,1), $S(A^{(1,1)} \rightarrow tt) = 1$	1803.09678
SSM $Z^* \rightarrow \ell \ell$	2 e, µ	2 e, µ –	-	- 35.1	Z' mass	4.5 TeV		1707.02424
SSM $Z' \rightarrow \tau \tau$	2 r	-	-	36.1	Z' mass	2.42 TeV		1709.07242
Leptophobic $Z' \rightarrow bb$		2 b	-	36.1	Z' mass	2.1 TeV		1805.09299
Leptophobic Z' -> tr	1e,µ 2	210, 2102	2] '9968	36.1	Z' mass	3.0 TeV	$\Gamma/m = 1%$	1804.10623
SSM W - CV	10,0	100	Yes	79.0	W mass	5.0 lev		AILAS-CONF-2018-017
HVT V' → WV → gagg mod	alB Oe, µ	2.1	-	79.8	V'mass	4.15 TeV	$g_V = 3$	ATLAS-CONF-2018-016
$HVT \: V' \to WH/ZH \: model \: B$	multi-channe			35.1	V' mass	2.93 TeV	$g_{1'} = 3$	1712.06518
LRSM $W_R^o \rightarrow tb$	multi-channe	1		36.1	W'rress	3.25 TeV	- (309125)	CERN-EP-2018-142
CI qqqq		- 2j -		37.0	٨		21.8 TeV v _{c1}	
Ci frag 2 e Ci tttt ≥1	2 e. µ	-	-	36.1	٨		40.0 TeV 974	1707.02424
	21 e.µ	216,211	Yes	36.1	٨	2.57 TeV	$ C_{4t} = 4\pi$	CERN-EP-2018-174
Axial-vector mediator (Dirac D	Μ) 0 e, μ	1-41	Yes	36.1	ment	1.55 TeV	$g_q=0.25, g_q=1.0, m(\chi) = 1 \text{ GeV}$	1711.05301
Colored scalar mediator (Dirac	DM) 0 e, µ	1-41	Yes	36.1	Mead	1.67 TeV	$g=1.0, m(\chi) = 1 \text{ GeV}$	1711.03301
VVXX EFT (Drac DM)	0 e, µ	1 J, ≤ I J	Yes	3.2	м,	700 GeV	$m(\chi) < 150 \text{ GeV}$	1608.02372
Scalar LQ 1 st gen	2 e	≥2j	-	3.2	LQ mass	1.1 TeV	$\beta = 1$	1605.06035
Scalar LO 2 ^{re} gen	2 µ	221	-	3.2	LQ mass	1.05 TeV	β = 1 x = 2	1605.06035
Scalar LU 3" gen	1.6.11	510,201	195	20.3	LUC (1989)	ENU CEN.	<i>p</i> = 0	1508.04735
$VLQ TT \rightarrow Ht/2t/Wb + X$	multi-channe	1		36.1	T mass	1.37 TeV	SU(2) doublet	ATLAS-CONF-2018-032
VLO BB \rightarrow Wt/20 + X	multi-channe	and set of the	March	36.1	B mass	1.34 TeV	SU(2) doublet	ATLAS-CONF-2018-002
$VLO Y \rightarrow Wb + X$	10.0	> 1 b. > 1	Vee	3.2	Ymass	1.44 TeV	$S(Y \rightarrow Wb) = 1.c(YWb) = 1/25$	ATLAS-CONE-2016-072
$VLQ B \rightarrow Hb + X$	0 e.u. 2 y	≥ 1 b, ≥ 1	Yes	79.8	Bimass	1.21 TeV	xp=0.5	ATLAS-CONF-2018-024
$VLQ QQ \rightarrow WqWq$	1 e.µ	≥4j	Yes	20.3	Q mass	690 GeV		1509.04261
Excited quark q* -+ qg	-	2 j	-	37.0	q* 11355	6.0 TeV	only a^* and a^* , $\Lambda = m(q^*)$	1703.09127
Excited quark $q^* \rightarrow q \gamma$	1 7	1j	-	36.7	q" mass	5.3 TeV	only a^* and a^* , $\Lambda = m(q^*)$	1709.10440
Excited quark b* → bg		1 b, 1 j	-	36.1	b" mass	2.6 TeV		1805.05299
Excited lepton (*	3 e, µ	-	-	20.3	1" mass	3.0 TeV	$\Lambda = 3.0 \text{ TeV}$	1411.2921
Excited lepton v.	3 e,µ,7	-		20.3	V (Tass	1.0 TeV	A = 1.6 TeV	1411.2921
Type III Seesaw	1 e,µ	221	Yes	79.8	N ² masa	560 GeV		ATLAS-CONF-2018-020
LHOM Majorana y	224	2)	-	20.3	Nº main	2.0 TeV	m(W _R) = 2.4 teV, no moting	1506.06020
Higgs triplet $H^{**} \rightarrow C$	3 e.u.*		2	20.3	Her mass	400 GeV	DY production, $S(H^{nn} \rightarrow fr) = 1$	1411 2921
Monotop (non-res prod)	10.0	1 b	Yes	20.3	spin-1 invisible particle r	1000 657 GeV	ann.m = 0.2	1410.5404
Multi-charged particles	-	-	-	20.3	multi-charged particle in	785 GeV	DY production, g = 5e	1504.04188
								a maximum distances

*Only a selection of the available mass limits on new states or phenomena is shown †Small-radius (large-radius) jets are denoted by the letter j (J).

Indirect hints for BSM physics from LHCb

• Violation of lepton-flavor universality (LHCb, $\sim 2.5 \sigma$)

 Deviations in angular observables of B⁰ → K^{0*}μ⁺μ⁻ (LHCb and ATLAS, ~ 3 σ)

Indirect hints for BSM physics from LHCb

• Deviations in differential branching ratios $\frac{dBR}{dq^2}$ (LHCb, **2 \sigma – 3.5** σ)

Statistical evidence of New Physics

In the last 4-5 years the flavor anomalies have generated speculations about New Physics (NP)

- > 300 papers in the literature
- ~ 15 global fits
- Emerging dominant NP operators in the effective Hamiltonian approach:

Statistical evidence of New Physics

After the March '19 update we published the only **fully Bayesian** fit on the market

K.Kowalska, D.Kumar, E.M.Sessolo, *Eur.Phys.J. C79 (2019) no.10, 840*

- 140 observables with experimental + theoretical correlations
- Up to 9 parameters scanned simultaneously
- Employed both the effective field theory and NP models approach

Posterior PDF:

- Pull of the best-fit point: 5.1 σ
- Bayes factor NP vs Standard Model: 10⁵ to 1 ("decisive")*
 - * unless underestimating hadronic uncertainties, unknown systematics, etc.

Models of New Physics for the flavor anomalies

Option 1 New heavy gauge boson Z'

Requires a neavy quark mixing with *b* and *s*:

$$\begin{pmatrix} \lambda_{Q,1}v_1/\sqrt{2} \\ \sqrt{2} \end{pmatrix}$$

due e le e europe

$$\begin{pmatrix} Y_{d,ij} \, v_d & \lambda_{Q,2} v_1 / \sqrt{2} \\ & \lambda_{Q,3} v_1 / \sqrt{2} \\ 0 & 0 & 0 & -M_Q \end{pmatrix}$$

Models of New Physics for the flavor anomalies

• There is at least one extra scale in the picture... What is its origin?

One option is supersymmetry-breaking...

- It protects all scalar mass parameters
- It agrees with expectations from the Higgs boson mass (SUSY ~ 10s TeV)

- Enticing connections with dark matter
- Complementary signatures (LHC, muon *g*-2)

Models of New Physics for the flavor anomalies

• Option 2 Leptoquarks

Rich phenomenology intersecting flavor decays, muon g-2, and collider bounds:

To take home

- The statistical evidence for NP in flavor anomalies at LHCb and others remains very strong
- Possibilities include heavy states (new gauge bosons, leptoquarks, vector-like heavy fermions) and light feebly interacting particles (not discussed here)
- NCBJ has been able to enter this competitive subfield with a number of relevant contributions
- Exciting times ahead?